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Abstract
The participation of residents plays a key role in

residential energy saving strategies because they mak

various energyelated behawiurs (EhrhardtMartinez,
2015) Thermostat control (i.e., setpoint schedule)
provides opportunities for significant energy saviags
feating and cooling accounts 1% ofthe site energy

decisions on how to operate building heating and Coo””gconsumptiorin residential housea theU.S. (EIA, 2015)

systems. Ecdeedback is an effective tool to motivate
energy conseidg behaviours (ECBs) by providing
informationon energyefficiencyandas®ciated benefits
The main purpose of this study is developan online
datadrivenbuilding energy model to evaluate heating and
coolingrelated behaviour changes for deedback
design in a multifamily residential building. grey-box
statespacemodelis presentedhat is updated with real
time data using a particle filter approach. The model
accounts fothe evolution of parametemndcapture the
unobserved inteunit heat transfer without modelling the
whole building thermal networkthrough sequerdl
Bayesian updateThe model isdeveloped and validated
usingdata collected in an actual multifamily residential
building.

Introduction
While there have been various energy efficien

strategies such as advanced heating, ventilation, and air

conditionng (HVAC) systems and their optimal control

(EIA, 2015) andit hes a standard fornof behaviour,a
setpont schedule.

There have been many efforts dretmal modelling of
housesfor various applications such aptimal control
(Ellis & Alangar, 2018) energy prediction(Siemann,
2013, etc. However, not manystudies have been
conductedon multifamily residenial building modelling
for behaviourafeedback design. One of the main
challengs is the heat transfer between different units,
which requirescomplexbuilding-level thermal network
modesk. In this paper, we present a novel ddtaven
modelling technique for multifamily residential buildings.
It includes a un#evel greybox model with online
learning of parametersand hidden states through
Sequential Bayesian update account for unobseed
boundary conditions and evolution of parameters

Field study

Building overview

to reduce energy Consumption and demand Withoutour testbed iSafUIIyremOde”emUltifamily residential

compromising comfort angroductivity in commercial

buildings, research in residential seci®ioften focused

on energy benchmarkingRoth & Jain, 2018 asset

ratings and cost analysis of building upgs(lourassa,

Rainer, Mills, & Glickman, 201 and peak demand
control(Hammerstrom et al., 2007)

The recent development of WiEhabled smart devices
provides an opportunity to home owners to track the

energy consumption associated with different devices
such as heating and cooling equipment, appliances, an

lighting (Ford, Pritoni, Sanguinetti, & Karlin, 2017)
However, consumption dataay not be sufficient forthe
residents to evaluate their behaviou@arious forms of
ecofeedbacksuch as peeromparison(Jain, Taylor, &
Peschiera, 2012) historic comparison, energy
benchmarkingand setpoint schedulin@isharoty, Yang,
Newman, & Whitehouse, 2015are often provided
togethemith datato leadpeopletowardsenergyefficient
behavious (Karlin, Zinger, & Ford, 2015)

In addition, it has been reported that explaining the

building, located in Indiana, United States. The building
has 49 occupied units (40kkdroom and 9xbedroom
units) located on the 2nd, 3rd, and 4th floors while one 2
bedroom unit and amenities (muyttuirpose room,
laundry, PC rom, storage rooms) are located on the 1st
floor. All building materials were replaced during the
remodelling except for the main concrete floor slabs,
columns, and the south wall facade. The external walls
and interunit walls include @nch fiberglass inglation
R19). The roof has-fhch polyiso insulation (R30), and
ere is no insulation in the main concrete floor slabs. The
restored south wall facade is composed of old brick
without additional insulation. The apartments are aligned
along the west andaet side of the building and the units
have windows facing west or east. Units on the west side
have a balcony with sliding doors in the living room. The
balconies on the 2nd floor are located on the ground and
look like a backyard (since the 1st floorusderground
on the west side) while the balconies on the 3rd and 4th
floors are norprotrusion type, and the units have smaller
floor area. The units on the east side have operable awning

benefits and providing actionable feedback can helpyingows in the living room with vinyl frame. Also, units
residents understand the relative importance betweery, poth easand west side have operable awning windows



in bedrooms with vinyl frame. Each unit is conditioned
with a dedicated air handler (with a heat pump outdoor
unit at the rooftop) as shown in Figure 1. Although two
neighbouring units share a mechanical roohe #ir
handler is a closebbop system, so there is no significant
air mixing between units. There is R19 insulation between
adjacent units but no insulation in the floor and ceiling

building characteristicas well aother disturbances such
asinternal heat gaing-or examplea unit can be adjacent
to otherhousehold units, unconditioned storaged may
havelessexposed area to the ambientifit is located in
the middle or top floor oftte building Also, units have
different layout (balcony door with large glazing or small
windows), and thus, the required amount of imgato

concrete slabs except for the roof and ground. Thereach a certain setpoican bedifferent To normalize
hallway is conditionedby multiple air handlers

Figure 1. Roomand heating/cooling system layout

In this building, Wi-Fi-enabled smart thermostats
(Ecobee3, https://www.ecobee.comn/ and sukcircuit
power meters (GreenEye Monitor,
http://www.brultech.com/greeneyeiwere installed to
collect disaggregatedenergy usage dataAll smart

features of the thermostats were disabled and thus, there

is no functional difference besides the ability to collect
measured datalemperature, occupey heating/cooling
control signal,and setpoint data are being collected via
web API to our cloud server. Power consumption is being
monitored by using multiple current transformerish a
WiFi-enabledsensor box. The sensor box was installed
behind the elctrical panel. The box is sending data to our
cloud server every 30 secondsweather station (Davis
Pro 2) was installed to monitor outdoor air temperature
humidity, and solar radiatioron the rooftop.All the
collectedraw data is being storedtim acloud server and

is uploadedafterpre-processing every dayhe study was
approved by the Institutional Review Board (IRB
Protocol #: 1702018811).

Observations

Figure 2 showsgyearly (JanDec 2018) electric energy
consumptiordata for heating and coolinglang with the

average temperature in each unit. Although the units are

exposed to the same weathed havesimilar mechanical
systems, floor areas, and building materials, taeérgy
consumption shossignificant variations even ithecase
of similar average setpoint temperatures.

In our previous workHam & Karava, 2018)we have
found that such variations can be explained ke
differences irthe locationswithin the building,different

these effects, in our previous wdqitam & Karava, 2018)
we proposed Bayesian mixture modéb identify groups

of units that have similar building characteristics and
boundary conditionsThrough this approach, we can
evaluate the observed energy behaviour (i.e., setpoint
schedule) by comparing the energy aangtion within

the normalized group of data. However, this method is
limited to the evaluation of past data. In this study, we
present an onlinedatadriven model to estimate the
energy consumption for a potential future behaviour
change.
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Modelling Methodology
Overall approach

Heating andcooling energy consumption of a certain
period is the outcome of sequential dynamical interactions
of building characteristics, mechanical system operation
with control input (i.e., setpoint schedule), weather, and
internal heat gains (e.g., body heat, appliarse etc.).

To answer the question of how much energy is consume
for heating and cooling given a behavioural intervention,
i.e., the setpoint schedule, all other variables need to b
sequentially estimated for the future evaluation period.
Since the buildig characteristics of each unit vary
according to the location and boundary conditions
(adjacent spaces), it is difficult to make reliable future
predictions with new setpoint scenarios usireakbox
model for a dynamical systenEven if we capture the
physical processes through a glmx model, the
unobserved boundary conditionse(, temperature of
neighbouring spacesre hard to be captured unless the
model includes all spaces a building. Finally, it is
necessary toalibratemodel multiple tines with different
dataset to identify seasaependent parameters such as
efficiency of heat pump for cooling, heating, and defrost
operation.

Therefore, we chose a uiével greybox structure with
online-parameter learning filter. Previous studies (Alam
Rogers, Scott, Ali& Auffenberg, 2018; Fux, Ashouri,
Benz, & Guzzella, 2014; Radecki & Hencey, 2012)
applied various Kalman filters for a gr&px building
thermal model byaugmentingparameters to thetate
space(Simon, 2006) In this model, both panaeters and
statesarefiltered (i.e., prediction and then updaiteyeat
time according to their noise variancedien new data
comein through Bayes rulegndthis structure of model
can providauncertainties in the prediction by quantifying
the posterioof hidden states. However, the posterior of
parameters can diffuse becauseviluiéance of parameters
would accumulate for every filtering st€hiu & West,
2001) In other wordsthe onestep aheadiltering of
parameters with diffused variance can engl with
incorrect values and predictionsFurthermore, hey
become worse if the filter starts with wrong initial
distributions of parameters

To overcome thiimitation, we adopt two strategiegl)
thevariances of parameters need to be correcteeveny
filtering step, and2) the parameter filter needs to start
with good initial valuesWe chamse Liu-West particle
filter (Liu & West, 2001)to correct the diffusn of
variance, and thenitial condition of parameters are
estimated through a systedentification technique

The overall process of our online model is shown in
Figure 3. First, the initiavalues of buildingphysical
parameters are obtained usingsystem identification
technique (i.e., optimize parameters to minimize
prediction errors)Once the initialparametewvaluesare
identified, then they arapdatedwith new data by using
the LivWest particle filte(Liu & West, 2001) After the
par ameter updat e,consumptiadnis we

predictedbased on a scenario for a future behaviour
change (i.e., new setpoint schedule).

Initiate building physical

Imtlallzahon of ’ parameter ranges by using
building-parameters system identification.
Update all parameters with new
Update measurement by using Liu-West
l particle filter
iction Predict a week ahead energy use
to evaluate new behavior

Figure 3: Model Process
Model structure

A grey-box modelstructure(Figure 4) is used to model
one household unit in the buildind\ll variables are
describedn Table 1.

@ : Observed nodes
QO : Hidden nodes

Ta

Figure 4: Model structure
Table 1 Variables and parameters in a model

Name Description
Y 3 Outdoor air temperature
‘Y 3 Indoor air temperature
"YHY Exterior wall, interior mass, artiermostat
Y 3 sensor temperature
Y 3 Overalltemperature ofieighbouringspaceg
W 3 Measured thermostat sensor temperaty
'Y RY Ay Thermalresistance between temperatuf
'Y Ry Ex7 nodes
Oéhi;f Thermal capacitanaaf each node
0 7 Solar gainghrough glazing
0 7 Internaldeviceheat gain
57 HeatCool supplyratefrom theheating and
cooling device

The model (Figure 4) can be expresseds aset of
differential equations fothe state(d) transition (Eq. 1)
and observatio(w) without noise(Eq. 2).
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In our model,the incoming solar radiatiofd  ©

& 0 0) ismodelledwith a single parameterd

0 o istheglobal horizontal irradiancat the weather
station, and includesthe overall effective window
area and its solar heat gain coefficiehhe actual heat
flow rate 0 o) is calculated by multiplying a constant
efficiency parameter{ 0 ) to the calculated heat flow
rate0  0).0 O isthecalculatecheatflow rate
of heating/cooling systenifrom the measured power
consumptiordata We usecalculatedvalues because we
do not measurdhe actual heaing/cooling rate but a
sequence of binary sigmalalong with the power
consumption of the heat pump system The
heating/cooling system in our tdstd has 4 operation
modes (1) heat pump heatinfhtg), (2) auxiliary heating
(aux), (3) heat pump heating with defrost cy¢hf), and
(4) heat pump cooling(clg). The operation mode
Q o EOCO®AE I Cis decided based on the
thermostat setting and outdoor air condition

.~ E®EO EOC
. - E®O AOQ
-0 . emo Axe O
y- E®o AlgC
The actuaheat flow rate0 o) are:
0 -0 5 - TQ#/00 5
e 0 -0 3 - 00 3 10
R S U SR AT (10
r 0 -0 - Q#/l 00
whered 7 R { handd | arenominal power

of heat pump heating, heat pump cooling, and auxiliary

heating.Q ,Q ,Q andQ are effectiveness times
parttime-load factor ratio. 'Q 0 is the measured
power, which is used to predicthe power consumption
given a setpoint change# / 0 Al A/0 are the
coefficient of performance values of heat pump for

heating and cooling respectivelylhis is acquired from
manufacturer6s catalogue
function of outdoor air temperaturéyj.

The continuous systeniA P FA P FAP is discretized
‘A P HA P HA P  using 5minute time-step
where(P={6 ,6 ,6,6,Y ,Y ,'Y,Y , 6 ,Q,
Q ,Q ,Q,7Q ,ah, ). Then the discrete state
space model can be expressed the following
probabilistic form (Egs. 1i114) with noise parameters
(@ R, ). Here, measurement error nojseis set tor@® t
according to thermostat sensor accuracy.

0® o ~ o6 sQoflfP M )
0D ®ws$Qo Al P h, (12)
Qo6 Rl P A6 AT (13)
QO Ad (14)
Initial parameter learning

For adiscrete statspace modetheexpectation ob -step
ahead prediction 04 and wgq can be
sequentially estimated throudfgs. 15 and 16from 6
andw.
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MOD g Abgq (16)
Theo-step ahead predictisiwith unknown state values
are compared with measured déathe initial parameters
are foundbased on theninimization ofthe sum of square
errors(Eq. 17). Sets of parameters are obtained by using
a differential evolutionary global optimizationmethod
with random initializatior{Mullen, Ardia, Gil, Windover,

& Cline, 2011) The bestparameter seis chosen by
calculating the samé-step aheadprediction for next
weeld data.

P ; AJCET M og (o ; 17
In the Table 2, the bourglof parameterange and the
estimation results are showrhe solutiors of Eq. 17 are

not unique according to their starting points though the
optimization results are similar. Thus, we repeated the

optimization50times ancdcalculated theangeghat were
used to generate initial particles fibre Liu-West filter.

The mean &lues are chosen based on best prediction for
the r

next weekods data whil e

other solutions.
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C
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Table2: Parametewvalues(Sl unitin parenthesis Nomenclature

Lower | Upper Estimatiorresult x = {10,y To o ) are states
Parameter—h- PP u = {T, Quo, O, Qe are inputs.
bound | bound (Mean SD) 8 = {0y, 0,, 0.4} are parameters
Y r 3 30(_1) 70(21]) CTIPT P ) BOpe = {Ce. Cins G, Gy Regs Ry, Ry, Ry}, sampled from covariance COV(BRC‘).
a,= {Aw,k, K Koy Kap g }, sampled from diagonal variance Var(ﬂu.)‘
cLCE KUY oo :
BT X 855 = {Ges Oy, 3, Oy, 0}, sampled from covariance Var(84 ).
YRY RYhY 50 80 X ® v C @ C& L|J Wj is diagonal noise matrix of parameters for every timestep update, see Eq. 19.
(15_5) (26.7) XC UL G ﬁ CS( lIJ t = {1: NT} is timestep, n = {1: N} is particles.
Algorithm
L
100 10000 XS C& &Y 1: Generate x{"*) ~ U(pyo — Oxortixo + Oxp)
6 " 4% Ex+ PULIL MO UL P @ YTT 2: Generate 01" ~U(pg o — a0, tao + gy ) for Byc, By, B,q, respectively
(190) (19000 3: Set initial weight of each particles as rrim) =1/N
- . .. 5 5000 4:fortin 2:NT do
0 458 ET+ (9.49) | (9495) PTMUTE TP WWUW Y TT 5. Compute Vg, = COV(Brc, ),
> 6: Compute Vg, Vo, _, —Var(ﬂu( J Var[ sdi— x)
5 " 4 15& ET+ 25000 | 65000 OCULUTMTPTTTT 7 Compute Sy, = Ifwgvei 1/2, for Bpe, 8, B4y, respectively
(47477 |(12344) PPTOPYWwWP 8  Compute B, = X1, 8%, /N, for Byc, B, 8,4, respectively
L 5 | 500 o compute s, = E(x e, 00w, ) = (x,00,u, )
Y 4 ET+ 9.5 (950 T TTLU X U WWU 10:  Compute ;1,,1,';',' =S50, 0 Y 4 (l— Sp.)8,_1, for Bgc, B, B4, respectively
Y RY 5 100 CTMuUpP® C&H 11:  Compute wf‘( N=alPpr (Yi\ﬂ(filgf:] 1 nuc[;ﬂ] 1 )
&t 3" 4 54j E7 (2.6 (52.9 @M PO @ LY 12: Normal\zew,(‘li}asnﬁllt'f’f L,VW'"E",
", e, = VU CC® p 13:  Sample m**M~Multinom(1: N, 1, ) and sort m"" in increasing order.
Y hY hy le4 10 om0y
&i3i" 4 5+ E 75515 (5.2 031 LTI PTIBT p O TV TT 14:  Sample 81"V ”N(F'g’:u (= SE )V, l)forBRc,ﬂu,ﬂsd,resnentive\v
i 1 E7|5.21e5) (5.29 ‘ 49 _ g (. 1) gt (O™ 1
C& [ p&' @ 150 Compute py, { X%, L6 ) f(:a(li1 .0, ,u[,l)
0 0 1 T8I0 TWITT U 16 Samplex(™~ v (" (i) 05)
- K - mi m
R 0 1 Other:f)[ayu 2 o 17:  Compute w!'™ = Pr{y |g(x“ ™ 8“"3) /Pr()ﬂg (.“m‘r 1]] F‘gq[; 1)))
Particle filter update | O

19:  Sample o ”J~Mult1nom(1 N, n“ “)] and sort 0" in increasing order.

Liu-west filter (Liu & West, 2001)is one type of particle ;5. seqfinaix, sampies via permutation x( « [

filter (i.e., Sequential Monte Carlanethod) which 21 Setfinal By, Bya, samples via permutation 8? 9 6™ or e B respectively
updates the pOSterlor Of State Varlamesurrenttlme CO) 22: Set ﬂa‘nj‘rmkev(j‘m} if specific u, of u, is involved in the timestep t.

based OrpreViOUS datdp(b p) but iS aISO Capab|e Of 23: SEtBS}N"—GE‘lﬂl if specific u, of u, is not involved in the timestep t.

updaing the parameters at the same tirfigu & West, 24: end for

2001) The jo‘intv distribution of state variables and Figure 5. Modified LiuvWest Algorithm foonline
parametersq @ P 4 ) is updatedon every iteration building model

from the previous datd=(. 18). The details of calculatioareshown in Figureb. In this

0 @ P g 60 4P P o rpg) q (18 research, the original algorithm is slightly modified
eo@q@ o@ggq I”POCPg) follows:
(1) We split the bilding physical parameters®

. 3 . 5 db
While the totalo numbe_r. of state_ partl_clesp are inputrelated parameter® , and standard deviation
updated throughhe auxiliary particle filtering method o 5ed parameter® , andthen® aresampled from

with sampling weight* ¢ the parameters of each thecovariance of previous values of all parameters while

particle P are updatel by adding noise £ ) the others® P ) are sampled frothevariance of each
generated by zero mean gaussian wdthgonal noise  Parameteas shown in Figuré. It should be noted that
matrix (f ) (Eq. 19) P arerelatedto eachotherthroughthe heat transfer
process in eachimestep while P are not always
P P - (19) dependento each otheas’l are not alwaysinvolved in
- x7 W the process averytimestep.

However, putting the parameters into the state vector end$2) For the same reasdp, are notalwaysupdated as
up with diffused variance, so the variance needs to beshown in line 22 and 23 of Figei5. For example, during
corrected so th& AP Wy 6 Aﬂgoq Aer . the heating proces¥) should not be updated.

By approximating the marginal posterior of parameter (3) We usea fixed noise matrixfor parameter updates
distribution 0 @ gvy  using amultivariate normal  specify the update ranges of each timestep as 5% and 10%
gaussian kernel, the parameters cangmated agq. 20. of parametersdé. standard devi a

OCP@CL e ah AEA@ Fﬁpﬁ AEA@ (21)

(20) We subtracthemean and dividby thestandard deviation
(Table 2) to the real parameter values so that they are
sampled from similagaussian distributiarAlthoughthe
original algorithm (iu & West, 200} derived a

simplified versionof variance updateorrection ruleby
using a single discounting factprwe use the original

0 PHors N E Nen fen



update rule withj » (line 7, 14 in Figureb) to specify on the initial parametersThe left side (2018/01/22

update ranges (Eq. 21) 2018/01/8) corresponds to the&aining period and the
(4) When there is missing data @ or”l , 6 andP resultsshow good agreement with measured datze
particles are not updated until new data comes in. right side (2018/01/22018/0202) is the prediction

Prediction period AIthough the qugl captures th'eve'rall
temperature profilef the building responsepscillations

Figure6 is aschematic diagram dhe prediction process  with an average of p 3 are observed Unobserved

with this model. With the recent states and updated djsturbances such as infiltration or human body heat could

parameters from the parti b gssocidtddtwit thiglischefandy,ebutt theW@aik 6 s e

consumption is predicted based arproposed setpoint temperature of neighbouring spac&¢ (yellow line) it

schedule and weather forecast is expected to be the main caigeausit is identified as

In this model, the heating and cooling operation signal a single constant and not updated

("Q o) isdecided every time step based on the setpoint

and the predicted indoor temperatuf® @t the current 2 e (=)

timestep. The thermostat model is composed of multiple K k

if-thenelse rules, and some key rules in our thermostat “ ! . J
areoutlinedbelow: 52 \J ‘| [ W‘W\i
! L]
i ‘ g -"lﬁ
‘ ‘?Jl " \
| \’ | 1

I Heat pump heating isdisabled when outdoor

Temperature (T.)

|
alidNh
temperature is lower thant ( p v 3} | m I
9 Auxiliary electric heating is disabled when outdoor air ‘ ‘ -\J \ \
temperature is higher thanu {p & 3). LAY B A v
1 When the setpoint is not met for 30 minutes with = Vet
heatpump heating, the auxiliar heating is activated meorz - wieord 018022

- When outdoor te_mper_ature is lower t@m; _Kn 3), Figure 7: Temperature prediction in training period
the deforst cycle is activateBut, thecycling interval Particle fil
is determined by sensor in outdoor unit. article filter

1 The minimum heatpump cycling time is 5 minute. ~ With initial parameter ranges, 10000 particles
parameter and stasamples are generated and updated on

new data through LiWest Patrticle filterFigure8 shows
the particle filter updatéor the beginning of the datat
The distribution offiltered sensor temperaturgtate ()
(2.5, 50, and 97.5% quantiles with blue and black lires)
shown with measured data. Since the filter starts with
good initial parameters, the filtered statein good
agreement withthe measured ¢& In addition, the
median profile of interior mass “Y and overall
neighbouring space’Y temperaturestatesare shown
with the green and yellow line, respectivel@ne of the
advantages of filter ithe updateof states distribution
every timestep.Specifically, in this model (Eqslli 14),
“Y is modelled asinobservedixed temperaturdor each
time step. However, its value would change for the next
Figure 6: Prediction process time step.By updatingthe state distributiorwith new

. data the filter identifies the unobservetiangs of Y as
Modelling results shownin theyellow line of Figure8.
Initial parameter learning

Oneweek (2018/01221 2018/01/3) training dataof one
household unitvith outdoor conditios ranging frono 1
to v T tis selectedfor learning the initial building-
physicalparametes (Table 2) With theboundsshown in
Table 2, we runthe optimizer to get initialranges of | L 77}.1Mem;
parameters with50 random initial starting pointdo h‘; [:,g“f,rf’ I

Temperature ['C)
e,

minimize theobjectivefunction (Eqg. 17). Thebestset of o ;'j;mwer/upper;

parameters are chosen based omhe temperature
predictionfor next five days (2018/1/29 2018/02/02) e

The best set insed as the mean tifeinitial parametes, Figure 8. Particlefilter for states

and the other sets are used to specify the ranges as showrigure9 showsas an examplthe update procedsr one

in Table 2.Figure 7 presens a comparisorof predicted parameter distributionY . From the initial parameter
indoor temperature”Y and measured datar based range the sampleareupdated through the filter. This can



be viewed as posteriglistributionof parameter with the
data beforghecurrent time stefEq. 18)

2= AL Lower
‘ Median
—— Upper

A .y OV VA
W L,’l '\\/,f"*" VY N "—,,..,.r,-\“’__‘_

I Pyt
i

u/_‘,-'-H-uW»— il
o U o
\
W

2018-01-03 2018-01-07

2018-01-27

2018-01-15 2018-01-19 2018-01-23

Date

2018-01-11

Figure 9. Particle filter for parameterupdate
Parameter learning for cooling operation

The particle filter isonline model, so itan learnnew
parameters. FigureOlshows the learning process of
cooling efficiency parameter— . As the initial
parameters are learned fréneheating seasome do not
have information regarding . In April, the green
period(1) in Figure D shows the first cooling operation
of the yearin this unit During period(1), the distribution
is significantly different and then it slowlychanges in
period(2).

o
o
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Sensor Temperature (73) [°C]
n

— Lower—Median— Upper

. - 2018-04. ‘5I
cooling (clg) operation Date

Figure 10. Learningnew parameter{ )
Approximation of future 4.

In Figure 8, the particle filter can identify unobserved
profiles of the overall neighbouring space temperature
“Y . However, the profiles are historic, and thusisi
necessary tpredictfuture profiles. Since thiis the result
from the complex thermal dynamics of multiple
household units with different settingnd behaviours, it
is impossible to predict the exact profiles the future
without information from all the spasén the building
Howevert hi s t emperature prof
sensor temperaturéY because the hanges i
temperatire would affect neighbouring spaadgs
temperaturetoo. Considering the impact of neighbouring
spaces to the unit &slow processlue to thdarge internal
mass ¢ ) and changem "Y within small ranges during
the whole seasonE 8cAg ft 3. However, we can
approximate'Y with "Y. Figure 1L shows the relationship
between identified Y and "Y for one householdvia
particle filter during JaitAug 2018.Although there are
variations, theyshow aclear positive correlation. Thus,
we usea linear function to approximate the relationship
of predicted’Y; by predictedY; as shown irFigure
11. In other words, based on current inplit and

r

predicted statesd , the nextstateso  are predicted

first, and theriYy is correctedvith ”Y;  (Eq. 23.
Y, p&® T8 pY; (22)

e e .

24~

23-

22-

Neighboring space temperature T, [°C]

21 22 23 24

Sensor temperature T, [°C]
S
Figure 11. Approximation of neighbouring space

temperature from indoor temperature
Model validation via prediction

In Figure R, the meantemperature prediction results
from the fixed model ¢reen linejnitial parameters from
system identification technique) atide updated model
(black line, updated parameters with particle filter) are
compared. In order twisualize theeffect of the online
approach, we updatdtie model fromthe winter period

and the comparethe predictions on summer data. Both
predictiors start withthe same filtered stateBom the
previous weekbut different system parameters and
neighbouring space moddror the fixal model, fixed
neighbour temperature and initial parameters are used.
The ydated model usesn approximatemodel forthe
neighbouring space temperature and updated parameters.

The fixed model 6s root me an
prediction error (RMSE) ip& 3, which is significantly
higher than the® v RMSE ofthe update model.
Fixed model Update RMSE: 0.35[°C]
— Measurement pred RMSE: 1.
—_ — Updated madel
222—
g
%?D-
3
8 nitoés

2018-07-12 2018-07-14 2018-07-18

Date

Figure 12. Comparison otipdated andixed modebf
meantemperature predictiofor a week duringummer
season

Eco-feedback scenario

In futurework by the authorghe developed online model
will be integrated in smart usénteractive ecefeedback
systemswith information visualization or voice control.
Such smart systems will be integrated rimulti-unit
residential buildings to help residentsake informed
decisions about their setpoint schedule considering the

2018-07-10



predicted energy use. In addition, this model will be Conclusions
considered in the d&n of personalizedfeedback
messages and incentives to motivate energy conservin
behavioursin this sectionye present a simple scenario
to demonstrate the use of the mod#fith the updated
model from the previous week, residents castimate
their expectedenergy consumption for next we#ékhey
adopt anew setpoint scheduldzigure 13 showshe
predicted eargy consumption from three setpoint
scenarios with uncertainties. The model is updated from
2018/01/01 to 2018/01/21, attteenergy consumption of
2018/01/2128 is estimated. The green distribution is the
energy consumption when the residents kesipgthe

current setpoint schedule (i.e., Home& 3, Away  This work was funded by the National Science
G & 3). The vertical line (63kWh) ihemeasured power  Foundation uder Grant No. 1737591 and the Big Ideas
consumption of this period, and the prediction results areChallenge program at Purdue University. Any opinions,
63.5 69.8kWh (2.597.5% quantiles). Trse values are  findings, and conclusions or recommendations expressed
quite close,and the small discre@ncy comes fronthe  in this material are those of the authors and do not
thermostat model error,unmeasured disturbances, necessarily reflect the views of the National Science

In this paper, we presented a ddtaven modelling
%pproackto predictthe energy consumption with a new
thermostat behaviour (setpoint schedule) in a multifamily
residential building. Thenline greybox model captures
the unobserved buildingboundary conditions and
evolution of parameteiisy using LiuWest particle filter.
The Bayesian sequential update feature of this model
allows estimation of the energy consumption based on a
new setpoint schedule, and it can be used fortiaal
ecofeedback design

Acknowledgements

neighbouring space temperature, etc. The blue
distribution isbased on agfficient setpoint scenario (i.e.,
Home¢ @ 3, Awayp @& 3). Although thisscenariois
during thewinter period, aly a smallamount ofheating

is required to maintain this setpoint. The red distribution
indicates the energy consumptifor a wasteful setpoint
scenario (i.e., Home @ 3, Away¢ 8r 3). This is about

4 timeshigherthanthe currentsetpointsettings It should

be noted that inthis building, the heating energy
consumptionin a unitis affected by theneighbouring
spaces. For exampl e,
temperature is maintained near32@luring the winter
because hallway and ad@at neighbours are all
conditioned Also, the location of thermostat in Figure 1
can explain this The thermostat is far away from the
buildingd s exterior wall so the average indoor
temperature could be lower than the thermostat
temperatureFinally, whenthe setpoint is not met for a
certain time (30 minutes) dhe outdoortemperature is
low, the auxiliaryelectricheater is used insteadtbEheat
pump. This leads teextra energy consumptio For
example, m wasteful setpoint scenayithhe heating engy
consumption is very largeecause the rate of temperature
increase becomes slower whibie indoor temperature is
higher thanthe neighbouring spacesnd this leads to
extra energy consumption due to continuous operation
theauxiliary heater.

0.4- Date: 2018/01/22 - 2018/01/28
Outdoor temperature: —6~12°C

Current Setpoint, [Home: 23.3°C, Away: 21.7°C]
Efficient Setpoint, [Home: 21.1°C, Away: 18.3°C]
Wasteful Setpoint, [Home: 26.1°C, Away: 24.0°C]

Measurement: 63kWh

Density
o
o

Mean: 4.7kWh Mean: 66.7kWh

0.1- Mean: 230kWh

0 50 100 150 200 250
Energy consumption [kWh]

Figure 13. Predicted energy consumption with
uncertainty
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